Tuesday, March 19, 2024
 - 
Afrikaans
 - 
af
Albanian
 - 
sq
Amharic
 - 
am
Arabic
 - 
ar
Armenian
 - 
hy
Azerbaijani
 - 
az
Basque
 - 
eu
Belarusian
 - 
be
Bengali
 - 
bn
Bosnian
 - 
bs
Bulgarian
 - 
bg
Catalan
 - 
ca
Cebuano
 - 
ceb
Chichewa
 - 
ny
Chinese (Simplified)
 - 
zh-CN
Chinese (Traditional)
 - 
zh-TW
Corsican
 - 
co
Croatian
 - 
hr
Czech
 - 
cs
Danish
 - 
da
Dutch
 - 
nl
English
 - 
en
Esperanto
 - 
eo
Estonian
 - 
et
Filipino
 - 
tl
Finnish
 - 
fi
French
 - 
fr
Frisian
 - 
fy
Galician
 - 
gl
Georgian
 - 
ka
German
 - 
de
Greek
 - 
el
Gujarati
 - 
gu
Haitian Creole
 - 
ht
Hausa
 - 
ha
Hawaiian
 - 
haw
Hebrew
 - 
iw
Hindi
 - 
hi
Hmong
 - 
hmn
Hungarian
 - 
hu
Icelandic
 - 
is
Igbo
 - 
ig
Indonesian
 - 
id
Irish
 - 
ga
Italian
 - 
it
Japanese
 - 
ja
Javanese
 - 
jw
Kannada
 - 
kn
Kazakh
 - 
kk
Khmer
 - 
km
Korean
 - 
ko
Kurdish (Kurmanji)
 - 
ku
Kyrgyz
 - 
ky
Lao
 - 
lo
Latin
 - 
la
Latvian
 - 
lv
Lithuanian
 - 
lt
Luxembourgish
 - 
lb
Macedonian
 - 
mk
Malagasy
 - 
mg
Malay
 - 
ms
Malayalam
 - 
ml
Maltese
 - 
mt
Maori
 - 
mi
Marathi
 - 
mr
Mongolian
 - 
mn
Myanmar (Burmese)
 - 
my
Nepali
 - 
ne
Norwegian
 - 
no
Pashto
 - 
ps
Persian
 - 
fa
Polish
 - 
pl
Portuguese
 - 
pt
Punjabi
 - 
pa
Romanian
 - 
ro
Russian
 - 
ru
Samoan
 - 
sm
Scots Gaelic
 - 
gd
Serbian
 - 
sr
Sesotho
 - 
st
Shona
 - 
sn
Sindhi
 - 
sd
Sinhala
 - 
si
Slovak
 - 
sk
Slovenian
 - 
sl
Somali
 - 
so
Spanish
 - 
es
Sundanese
 - 
su
Swahili
 - 
sw
Swedish
 - 
sv
Tajik
 - 
tg
Tamil
 - 
ta
Telugu
 - 
te
Thai
 - 
th
Turkish
 - 
tr
Ukrainian
 - 
uk
Urdu
 - 
ur
Uzbek
 - 
uz
Vietnamese
 - 
vi
Welsh
 - 
cy
Xhosa
 - 
xh
Yiddish
 - 
yi
Yoruba
 - 
yo
Zulu
 - 
zu
Subscriber Login

Water, sanitation, hygiene, and waste management for the COVID-19 virus

by Clean India Journal - Editor
0 comment

WHO Interim guidance 19 March 2020

This interim guidance supplements the infection prevention and control (IPC) documents by summarizing WHO guidance on water, sanitation and health care waste relevant to viruses, including coronaviruses. It is intended for water and sanitation practitioners and providers and health care providers who want to know more about water, sanitation and hygiene (WASH) risks and practices.

The provision of safe water, sanitation, and hygienic conditions is essential to protecting human health during all infectious disease outbreaks, including the COVID-19 outbreak. Ensuring good and consistently applied WASH and waste management practices in communities, homes, schools, marketplaces, and health care facilities will help prevent human-to-human transmission of the COVID-19 virus.

The most important information concerning WASH and the COVID-19 virus is summarized here.

· Frequent and proper hand hygiene is one of the most important measures that can be used to prevent infection with the COVID-19 virus. WASH practitioners should work to enable more frequent and regular hand hygiene by improving facilities and using proven behavior-change techniques.

·  WHO guidance on the safe management of drinking-water and sanitation services applies to the COVID-19 outbreak. Extra measures are not needed. Disinfection will facilitate more rapid die-off of the COVID-19 virus.

·  Many co-benefits will be realized by safely managing water and sanitation services and applying good hygiene practices.  

Currently, there is no evidence about the survival of the COVID-19 virus in drinking-water or sewage. The morphology and chemical structure of the COVID-19 virus are similar to those of other human coronaviruses for which there are data about both survival in the environment and effective inactivation measures. This document draws upon the evidence base and WHO guidance on how to protect against viruses in sewage and drinking-water. This document will be updated as new information becomes available.

1. COVID-19 transmission

There are two main routes of transmission of the COVID-19 virus: respiratory and contact. Respiratory droplets are generated when an infected person coughs or sneezes. Any person who is in close contact with someone who has respiratory symptoms (sneezing, coughing) is at risk of being exposed to potentially infective respiratory droplets.1 Droplets may also land on surfaces where the virus could remain viable; thus, the immediate environment of an infected individual can serve as a source of transmission (contact transmission).

Approximately 2−10% of cases of confirmed COVID-19 disease present with diarrhoea,2-4 and two studies detected COVID-19 viral RNA fragments in the faecal matter of COVID-19 patients.5,6 However, only one study has cultured the COVID-19 virus from a single stool specimen.7 There have been no reports of faecal−oral transmission of the COVID-19 virus.

2. Persistence of the COVID-19 virus in drinking-water, faeces and sewage and on surfaces.

Although persistence in drinking-water is possible, there is no evidence from surrogate human coronaviruses that they are present in surface or groundwater sources or transmitted through contaminated drinking water. The COVID-19 virus is an enveloped virus, with a fragile outer membrane. Generally, enveloped viruses are less stable in the environment and are more susceptible to oxidants, such as chlorine. While there is no evidence to date about survival of the COVID-19 virus in water or sewage, the virus is likely to become inactivated significantly faster than non-enveloped human enteric viruses with known waterborne transmission (such as adenoviruses, norovirus, rotavirus and hepatitis A). For example, one study found that a surrogate human coronavirus survived only 2 days in dechlorinated tap water and in hospital wastewater at 20°C.8 Other studies concur, noting that the human coronaviruses transmissible gastroenteritis coronavirus and mouse hepatitis virus demonstrated a 99.9% die-off in from 2 days9 at 23°C to 2 weeks10 at 25°C. Heat, high or low pH, sunlight, and common disinfectants (such as chlorine) all facilitate die off.

It is not certain how long the virus that causes COVID-19 survives on surfaces, but it seems likely to behave like other coronaviruses. A recent review of the survival of human coronaviruses on surfaces found large variability, ranging from 2 hours to 9 days.11 The survival time depends on a number of factors, including the type of surface, temperature, relative humidity, and specific strain of the virus. The same review also found that effective inactivation could be achieved within 1 minute using common disinfectants, such as 70% ethanol or sodium hypochlorite (for details, see Cleaning practices).

You may also like

Leave a Comment

Clean India Journal, remains unrivalled as India’s only magazine dedicated to cleaning & hygiene from the last 17 years.
It remains unrivalled as the leading trade publication reaching professionals across sectors who are involved with industrial, commercial, and institutional cleaning.

The magazine covers the latest industry news, insights, opinions and technologies with in-depth feature articles, case studies and relevant issues prevelant in the cleaning and hygiene sector.

Top Stories

Subscribe To Our Newsletter

Copyright © 2005 Clean India Journal All rights reserved.

Subscribe For Download Our Media Kit

Get notified about new articles